일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- 해양빅데이터
- fastai
- 청년빅데이터캠퍼스
- 조선빅데이터
- 해사법
- 빅데이터경진대회
- 유니스트
- AI
- 데이콘
- 해상교통법
- 딥러닝
- 항해학부
- 해양수산빅데이터경진대회
- 해양수산빅데이터
- YGPA 공공데이터 활용 비즈니스 공모전
- 펭귄몸무게예측대회
- 한국해양대학교
- 선박직원법
- 머신러닝
- HSK
- 해양수산빅데이터활용공모전
- 빅데이터
- 인생
- 여수광양항
- 현대중공업빅데이터경진대회
- 선원법
- 항해사
- 여수광양빅데이터경진대회
- 충청남도 청년네트워크 위원회
- 해양수산부
- Today
- Total
목록fastai (2)
경 탁
금 포스팅에서는 MNIST 데이터를 통해 간단한 모델링을 하고 손실함수를 통해 파라미터를 조정하는 내용을 다룰 예정입니다. 본격적인 코드에 들어가기 앞서, 파라미터를 조정하는 '경사하강법'에 대해 짚고 넘어갈까 합니다. 0. 경사하강법 파라미터란 변수를 의미합니다. 예를 들어 중학교때 배운 기초적인 함수 1차 함수에서 Y = ax + b // 여기서 a와 b를 파라미터라고 칭합니다. 보다 정확도가 높은 함수를 만들기 위하여 파라미터를 조정합니다. 본 포스팅에서는 임의로 '초기화'할 예정입니다. 그리고 그 값으로 예측하고 정답과 예측값의 차이를 측정합니다. 여기서 쓰이는 것이 '손실함수' 입니다. (저번 포스팅에서 다룬 L1 / L2 역시 손실함수의 일종입니다.) 그리고 그 그레디언트를 계산하고 이를 통해..
본 포스팅은 한빛미디어에서 나온 fastai & pytorch가 만나 꽃피운 딥러닝에 대한 책에 대해 다룹니다. 예전에 사이킷런으로 머신러닝을 공부하다가 PYCARET을 알고 나서 충격 먹었던 기억이 납니다. 점점 갈수록 낮아지는 M/L의 진입장벽, 그때 들었던 생각은 딥러닝에 대한 이런 자동화 라이브러리는 없겠지하는 생각이었습니다. 승선 중 우연히 공부에 대한 자극을 받고자 책을 찾았는데 , 그때 찾았던 도서가 바로 이 책입니다. 딥러닝에 대한 자동화 라이브러리도 벌써 시중에 나왔구나 하는 충격과 함께 공부하리라 다짐했었는데, 선박이라는 고립된 환경, 잘안되는 인터넷 때문에 공부하다가 말았던 기억이 납니다. 잡소리는 이쯤하고 앞으로 본 서적에 대한 공부와 함께 코드 그리고 문제점 & 해결점을 포스팅할까..